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Problems of dissipative instability (in particular, overheating) in
magnetohydrodynamics has been studied in [1-6]. The Leontovich
mechanism of overheating instability is explained in [1] by the ex-
ample of a stationary homogeneous plasma in a strong magnetic
field along which current flows. The rate of buildup of perturbations
is estimated in [2] to explain the effect of overheating instability on
the operation of an MHD generator, The effect of inhomogeneity in
the temperatuze field and in the boundaries of the region on the for-
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mation of this instability has been studied by the example of dis~
charge in a stationary medium in the absence of a magnetic field
[3]. Certain cases of overheating instability in magnetohydrodynamics
are considered in [4, 5], where it is shown that it can be aperiodic as
well as oscillatery (Alfven and acoustic waves). Finally, the hydro-
dynamic and overheating branches of instability in the case of non-
isothermal plasma flow in a plane MHD channel was investigated in
[61. But the overheating instability was examined without allowance
for the dependence of the viscosity and thermal-conductivity coeffic-
ients on temperature in the limiting case S <Ry < 1 and only for
small perturbation wavelengths.

The development of shortwave perturbations.is studied below
with allowance for viscosity and thermal conductivity and for a
wider range of conditions A < 1. Overheating instability over the
entire range of wavelengths for the case considered in [6] is.also stud-
ied.

1. Steady nonisothermal plasma flow in a plane
MHD channel was studied in [7,8]. Let the x axis be
directed along the flow; let the y axis be directed
along the external homogeneous magnetic field B, and
let the z axis be directed along the constant electric
field E. The channel is bounded by dielectric plates
at y =+1. It is assumed that the transport coefficients
are power functions of temperature

o=0o(T/To)*, #u=u(T/Tof,
n= (T /Ty, 1.1)

where @y, wy, and 7, are the electrical-conductivity,
thermal -conductivity, and viscosity coefficients at the
wall temperature T,. Moreover, it is assumed that
the applied fields do not upset the isotropy of the med-
ium's properties. Assuming that in the steady state
all values are functions of y, we can formulate a non-
linear boundary-value problem whose solution will
give the distribution of velocity, temperature, and
other values between the plates. This was done in [8]
and the results will be used in solving the eigenvalue
problem for perturbation wavelengths that are com-
parable with or greater than the distance between the
plates. The velocity, temperature, and current-den~
sity distributions are functions of the six similarity
parameters:

_ @\’/!
% Bv, M=BL(Z],
_ Eno _IB ;_ bBp?
K= —mpp O =gy V= P )

where p is the pressure gradient along the flow and I
is the current per unit length of channel. Besides
these parameters, the induced magnetic field By is
also a function of the magnetic Reynolds number Rpy,.

Let us formulate the problem of the stability of the
described steady state with respect to two-dimension-
al perturbations which are of particular interest in
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view of the flow geometry. The perturbations u', v!',
Bx', By', j,', and T', which are functions of x,y, and
z, can exist in this case. A general system of equa-
tions for the perturbations, which simultaneously
takes into account the effect on stability of hydrody-
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namic, electrodynamic, and thermal effects, is giv-
en in [6].

Below, we shall limit our examination to the case
in which velocity perturbations are small and the de-
velopment of instability is determined by the dynamics
of current-density and temperature perturbations.
This is the case when the conditions [6]

B X _ e
A_W'<1’ 7 _Plv*<1 (1.3)
are satisfied.

Here A is the Alfven number, R is the Reynolds
number, u is the permeability, p is the density, and
v* is the characteristic flow velocity. It is conven-
ient to introduce the stream flow function for mag-
netic-field perturbations

B/ =0d¢/dy, B/=—08p/0z, pj,,=—Ap. (1.4

If we let 9 denote the temperature perturbation,

it is easy to write the initial system of equations
9 d
GRS

9z

1 af
=lEA€p+El=B, (1.5)

a , 09
pc<%%+va—z) =%A0 4+ 2Bx (In T) a—y-}—v

+ [~ Bx(a )2+ (r— B G —
—(oc—{—B)E’;-]O—2”iSAq3, (1.6)

where v, T, and j are the velocity, temperature, and
current density in an unperturbed flow; ¢ is the spe-
cific heat; o, %, and n are defined according to (1.1);
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the primes indicafe differentiation with respect
to y. Let us introduce the following dimensionless
values (primes will be omitted below):

. A VY
]—‘GOD'B’ —To“r e—‘ﬁy
S r= PO 7
G—Go’ x——%u' 7\ Mo (1')

Then we can rewrite Egs. (1.5) and (1.6) in dimen-
sionless form

3 11 f
V=g A+ 356, (1.8)

2| , 08
Z_g_l_v‘l’-_—%—er—i—l—gx(lnT) 55+

+H=frary 4 — B —
—(a+B)SN%;—T]e—2A —%%Aw

%
(Rm — pogr*l, P =2PC,
Xo

=T S = AR, Np =12)
Q %ol s ' " P %o

(1.9)

where Ry, is the magnetic Reynolds number, P is the
Peclet number, Q is a thermal parameter similar to
(1.2), Sis the hydromagnetic-interaction parameter,
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and Np is the Prandtl number. Since the»coefﬁcients
of (1.8) and (1.9) are functions only of y, the system
is solved in the form

¢ = ¢ (y)exp (ikx — int) (1.10)

(0 = o, 4 iey),

where k is the dimensionless wave number and w is
the dimensionless oscillation frequency. Equations
(1.8) and (1.9) must be solved under the amplitude
boundary conditions
0(x1) =0, (@/Qu=TFk. (1.11)

2. Let us study the behavior of "shortwave' per-
turbations when the characteristic dimension for the
variation in the amplitude of perturbation Ay, is small
in comparison with the scale for unperturbed values
1. If we represent the amplitudes in quasi-classical
form

P (y) = exp (i f kydy), (2.1)
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where k is a slowly varying function of y, the case in
questlon can be defined by the condition Ik | > 1.

Let us assume, first of all, that the v1scosH:y and
thermal-conductivity coefficients are approximately
constant. This occurs, for example, with the dense
low -temperature plasma of MHD generators, which
is characterized by a strong conductivity-temperature
dependence (approximated by the formula o ~ exp (—A/T)
or o~ T3 1f welet 8 =7 = 0, if we eliminate 6
from (1.9) by using (1.8), and if we drop the terms
~ky_1, we obtain

WV — (28 + (R + P) [ —allgl ¢ + {4
+ & [(6Ry + P) [ —allg]l+
+ oRLf (Pf + allg)} 9 =0,
f=i(kv—0), g=£;,

7¥U2  spBye2 ) (2.2)

N=sQR= 172 _
GooT'o %07

The dimensionless number oIl may be called the
overheating parameter. If Eq. (2.2) admits of finite
solutions [9], in the quasi-classical approximation
(2.1) we obtain the following dispersion equation:

(b + K2 — (b + B) [— (R + P) f +
+ oll} + Ryf (Pf +all) =0, 2.3

where k , f» Rm, and II are the values of the slowly
varying functlons ky, f, 0Rm, ‘andIlg at a specific point
Vo. If we require that the roots of Eqg. (2.3), quad-
ratic in f, lie in the left halfplane, it is easy to obtain
the stability criteria

(ke + 5 (1 + P/ Ry) + oIl >0,

(k2 + k) —all >0. 2.4

If @ > 0, inequality (2.4.1) is automatically satis-
fied, and we arrive at condition (2.4.2), which was
obtained earlier [6] for Ry, < 1. If @< 0, inequality
(2.4.2) is satisfied identically and the stability criter-
ion is expressed by the weaker condition (2.4.1), Thus,
we find that overheating instability is possible when
Ry 31 and at negative a.

Let us return to the question of the existence of finite solutions
of Eq. (2.2). We represent the fourth-order operator on the left of
(2. 2) as a product of two second-order operators, using their commu-
tivity 1n a quasi-classical approximation with accuraey to terms of

iy
Dig4(r+ 5) D2o o rsp = (D2 4 1) X

. 2(..)
X (D% 4 s)@ + O (ky 1)<D=——-—dy ) (2.5)

Hence, forr ands we have
I+ 5=~ 2k — [(6R, - P) f —allg],
rs=k 4+ K [(6R, + P} f —allg] +SR,f (Pf+allg). (2.6)

In general, formulas (2.6) allow us to reduce the analysis to the
study of two second-order equations, but these expressions for r and

s are cumbersome. For simplicity, we shall limit ourselves to the case
of Ry « P, which has a fairly wide range of applicability. Then it
is easy to show that Eq. (2. 2) can be written as

D2 — Ky (D2 — k2 — Pff-allg) g =0, .17

Thus, the problem reduces to investigation of the solutions of a
Schrodinger equation with the complex potential U+ iV

¢ — (U +iV)p=0,
U=k—ollg +oP , V="P(kv—o,) . (2.8)

The initial steady state is symmetric in y, and it can be seen
that the real part of the potential has the form of a well and the ima-
ginary part, the form of a hump, If V = 0, finite solutions exist. The
finiteness condition is found by joining the solutions that decay at
both infinities with the oscillating solutions within the well at the re-
versal points and it is the phase integral (Bohr quantization condition).
It has been shown [9] that the quasi-classical approximation can also
be used for equations of the form of (2,8), when the imaginary part
of the potential is not zero, if complex reversal points are used. The
finiteness condition is the phase integral taken along the line zc,
which connects the reversal points, where Im{U(z,) + iV(z¢] = 0,
and all values are real if the semiaxes y = % and the lines | zc| —
~>< lie in a single region bounded by the two anti-Stokes lines [10]
To draw qualitative conclusions about stability, however, it is not
necessary to find precisely the frequency spectrum from the phase in-
tegral, since for each eigenvalue of the frequency wn there is a
point yp in the localization region ¢(y) such that

V{y,, o, k=0,

Re k2 (,) + U (¥, 0, H)=0. 2.9

If we apply this rule to Eq. (2.8), we find at the boundary of
the stability region (wi = 0)

ko (yo) = @,., k2 (y,) + k2 —allg () =0 (2.10)

where yo is a point within the flow core. Expression (2.10) coincides
with formula (2. 4. 2). To find the exact imstability boundaries and
the increments, the problem should be solved by calculating the
phase integral at given U(z) and V(z).

We can prove the existence of finite solutions for Eq. (2. 8) and
derive conditions such as (2. 10) by expanding the potential U+ iV
in series near the axis of the channel and by solving the Schrodinger
equation for a harmonic oscillator, as was done, for example, in
[11L

3. Now let us examine the effect of thermal con-
ductivity and viscosity on the development of insta-
bility. We shall limit ourselves to the case when Ry «
<« 1. Then, it follows from Eq. (1.8) that

Ag = —aR,j0/T (3.1)

which allows us to eliminate ¢ from Eq. (1.9). If we
let X = TBG , after formal transformations it iz not
difficult to obtain

X+ [—B(+ BTy —
—BUn Ty —R 4 (y —B)Q T7+
Fla—BIT LI P’”’”“’]x_ 0. (3.9
The temperature variations in the channel, under
the conditions of the problem, are assumed to be re-

latively small and the number g ~ 1; therefore, we
can drop the first two terms in the brackets in Eq. (3.2).
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Thus, we arrive at an equation of the (2.8) type with
an additional term governed by viscous energy dissi-
pation.

If o andy >, the real part U represents a poten-
tial well whose depth is proportional to the ocverheat-
ing parameter (o - 8)II. The depth of the well is fur-
ther increased if @ > g >7 by a value proportional to
(8 -v)Q. Otherwise, when a < 8, the real part of the
potential has the form of a hump. The height of the
hump is proportional to (8 — a)lI, if g >vyand increases
by ~@y — 8 )Q if B < v. The existence of finite solu~
tions for Eqg. (3.2) when the real part of the potential
Uis a well was discussed above. If V=0 and Uis a
hump, there are no finite solutions. But the presence
of the imaginary part V can cause finite solutions to
appear even when U is a hump, as was shown in [9] by
the example of an equation for a complex "inverted"
oscillator. This circumstance, and also the contin-
uous dependence of the solutions of (3.2) on the par-
ameters «, 8, and v, for shortwave perturbations
allows us to use quasi-classical approximation (2. 1),
which gives rise to the stability criterion

kR >@—B) T+ (—8)0,  (3.3)
where ky, I, and Q are the values of the slowly vary-
ing functions ky, 0§ /owT, and Qnv?/«T at some point
Yo-

Formula (3. 8) makes possible qualitative analysis of the effects
of various factors onstability, as well as determination of the possi-
ble mechanisms of dissipative instability. The first term on the
right of (8. 3) is determined by the presence of Joule heating, and
the second, by viscous dissipation. The effect of thermal conducti-
vity manifests itself primarily through the index B, Regardless of o
and ¥, it is apparent from (3. 3) that when 8 > 0, thermal conducti-
vity promotes flow stability, while when B < 0, it can be a cause of
dissipative instability. For example, when o =7 = 0, instability can
occur, the physical meaning of which consists in the following, Wwith
slight overheating of an element of the medium, the thermal-
conductivity coefficient and, therefore, the heat flux from that
element are reduced, which leads to even greater overheating., The
mechanism of viscous dissipative instability is related to the index ¥,
if y > 0. Its physical meaning is similar: with accidental overheating
of an element of the fluid, the viscosity coefficient and, consequently,
the viscous energy dissipation in the element increase, which results
in further heating of the element. It should be noted that these in-
stability mechanisms can also occur in ordinary hydrodynamics. In
contrast to these mechanisms, the Leontovich overheating instabil-
ity associated with the index o is a result of the dependence of con-
ductivity on temperature and Joule energy dissipation.

As can be seen from (3. 3), all or part of these instability mech~
anisms can appear in the problem in question, depending on the re-
lationships between the parameters o, 8, and y. In particular, it is
not difficult to see that viscous dissipation can stabilize the instability
caused by Joule heating, and vice versa. Different versions may be
examined in the specific selection of o, B, andy.

4. Finally, let us examine overheating instabil-
ity without assuming small perturbation wavelengths.
For simplicity, we shall limit ourselves to the case
when Ry, < 1 and ignore the effect of changes in ther-
mal conductivity and viscosity. Then, assuming that
B =v =0, from (3.2) we obtain

L(6) = 6"+ [iP (0 — kv) — (B2 —allg)] 0 = 0. (4.1

This equation should be solved with homogeneous
boundary conditions (1.11). Since Eq. (4.1) is symme-
tric in y, it is sufficient to consider separately the
cases of even and odd perturbations in the interval
(0,1). The conditions

8°(0) =0, 6(1) =0; 6(0) =0,0(1) =0 (4.2)

respectively, must be satisfied for even and odd solu-
tions.

We shall use the Galerkin method to solve the eig-
envalue problem for (4.1) and (4.2). We take a set of
normalized approximating functions ¥y(y) that satisfy
boundary conditions (4.2). If we approximate the so~
lution with the sum

8= Crb+ ... + Cobp (4. 3)

from the requirement that the residue of the equation
be orthogonal to the approximating functions we ar-
rive at the system of algebraic equations

1

L4 3
Z Cn S \me(qJn)dy =0

n=1 0

(n,m=1,2,....p) . (4.4)

Thus, the problem reduces to investigation of the
characteristic equation—the determinant of system
(4. 4)

[ Ln | = | — Noan + iP (0N — k) —

mn)
— (BN — a0 g ) |=0
1 1
(Nm;z = S YmPr'dy, Npp = S PrPndy,
0 0
1
omn = § bty

0

(4.5)

Calculation of the first eigenvalue, which deter-
mines the boundary of the stability region, is of par-
ticular interest, If we let wj = 0, if we equate the
real and imaginary parts of (4.5) to zero, and if we
eliminate wy from the two obtained equations, we can,
in principle, obtain for fixed P and « an equation of
the form

F@2, 1) =0. (4.6)

This equation in the plane (kZ,H)defines a neutral
curve that separates the stability region (wj < 0) from
the instability region (wj > 0). It is easy to verify that
in first approximation the characteristic equation has
the form

®, = kvy,, Po;=—Ny' —k 4 allg,  (4.7)

Thus, the neutral curve is a straight line with the
slope (ozg“)‘i. The accuracy of the first approxima-
tion is not great, however, and the dependence of the
stability-region boundaryon P does not appear in it.
Therefore, calculations were made in second approx-
imation. The following sets of approximating func-
tions:

lpn(l) = N’n ('1 — yzn)’ wn(‘l) — Nn (ch n—ch ny),

1pn(3) = Visinnny (n>1), (4.8)
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where N, are normalization factors, were used for
even and odd perturbations, respectively. In the cal-
culations, the current density J = 0, the thermal par-
ameter N = 1, and the index o =10([8] .

A series of neuiral curves for various Hartmann numbers M (in-
dicated on the curves) when P = 1 for even perturbations is plotted
in Fig. 1 on the (&%, I) axes. The stability region is located under the
neutral curve, When k10, the boundary of the stability region is
a straight line, in accordance withthe results of quasi-classical theory
(2.4.2) and (2.10), It is also apparent from Fig, 1 that the slope of the
curves and, therefore, the stability region are reduced as the mag-
netic field is increased.

The effect of thermal conductivity on stability can be seen from
Figs. 2 and 8, in which neutral curves are plotted for M = 0,1 and 1
and M = 3,5, and 17, respectively, at P= 1,10, and 100 (indicated
on the curves), (For convenience, the groups of curves for various M
are shifted upward along the axis of the ordinates by a distance of 5.)
It should be noted that the curves with P < 1 are practically the same
as the line P= 1, At sufficiently high k, the neutral lines for fixed
M become straight lines with the same slope, regardless of P, This
agrees with the results of quasi-classical theory (2. 4. 2) and (2. 10)
(as P increases, the range of values k ~ P increases, in which con-
vergence of the line slopes occurs). It follows from Figs. 2 and 3
that for intermediate and short wavelengths an increase in P results
in a certain increase in the stability region. With an increase in M,
however, the effect of P is reduced, and the neutral curves begin to
merge, The solid lines in Figs., 1-3 show the results of calculations
with power functions (4. 8. 1). For comparison, the dashed lines show
the neutral curves calculated with the exponential functions zpn( ) ar
P=1. As can be seen, the results are virtually independent of the
choice of the set of approximating functions. The calculations made
with functions (4.8, 2) showed that the boundary of the stability re-
glon is determined by even perturbations. The neuiral curves for the
odd perturbations are situated in the instability region relative to the
even perturbations,

In conclusion, the following fact should be pointed out. For
shortwave perturbations, according to (2. 10) and (3, 2), the phase
velocity of the wave is independent of k. Appreciable dispersion
occurs in the case of intermediate and long waves. Figure 4 shows a
series of curves for P = 1that show (w/k) as a function of k? for neu-
wal oscillations. At high k, the curves become constant, in accord-
ance with (2. 10) and (3, 2); when k € 10, they have a hump. The
figures on the cwrves indicate the M value, i.e., the wave velocity
increases with an increase in the field, If we know (w/k) at high k
from an exact solution and determine the coordinate yq using (2. 10),
we can verify that the slopes of the curves as calculated exactly and
with (2. 10) coincide,

The author thanks Yu, M. Zolotaikin for programming and per-
forming the calculations.
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